MoboReader > Literature > Astronomy of To-day


Astronomy of To-day By Cecil G. Dolmage Characters: 12491

Updated: 2017-12-06 00:02

Up to this we have merely taken a general view of the solar system-a bird's-eye view, so to speak, from space.

In the course of our inquiry we noted in a rough way the relative distances at which the various planets move around the sun. But we have not yet stated what these distances actually are, and it were therefore well now to turn our attention to this important matter.

Each of us has a fair idea of what a mile is. It is a quarter of an hour's sharp walk, for instance; or yonder village or building, we know, lies such and such a number of miles away.

The measurements which have already been given of the diameters of the various bodies of the solar system appear very great to us, who find that a walk of a few miles at a time taxes our strength; but they are a mere nothing when we consider the distances from the sun at which the various planets revolve in their orbits.

The following table gives these distances in round numbers. As here stated they are what are called "mean" distances; for, as the orbits are oval, the planets vary in their distances from the sun, and we are therefore obliged to strike a kind of average for each case:-

Mercury about 36,000,000 miles.

Venus " 67,200,000 "

Earth " 92,900,000 "

Mars " 141,500,000 "

Jupiter " 483,300,000 "

Saturn " 886,000,000 "

Uranus " 1,781,900,000 "

Neptune " 2,791,600,000 "

From the above it will be seen at a glance that we have entered upon a still greater scale of distance than in dealing with the diameters of the various bodies of the system. In that case the distances were limited to thousands of miles; in this, however, we have to deal with millions. A million being ten hundred thousand, it will be noticed that even the diameter of the huge sun is well under a million miles.

How indeed are we to get a grasp of such distances, when those to which we are ordinarily accustomed-the few miles' walk, the little stretch of sea or land which we gaze upon around us-are so utterly minute in comparison? The fact is, that though men may think that they can picture in their minds such immense distances, they actually can not. In matters like these we unconsciously employ a kind of convention, and we estimate a thing as being two or three or more times the size of another. More than this we are unable to do. For instance, our ordinary experience of a mile enables us to judge, in a way, of a stretch of several miles, such as one can take in with a glance; but in our estimation of a thousand miles, or even of one hundred, we are driven back upon a mental trick, so to speak.

In our attempts to realise such immense distances as those in the solar system we are obliged to have recourse to analogies; to comparisons with other and simpler facts, though this is at the best a mere self-cheating device. The analogy which seems most suited to our purpose here, and one which has often been employed by writers, is borrowed from the rate at which an express train travels.

Let us imagine, for instance, that we possess an express train which is capable of running anywhere, never stops, never requires fuel, and always goes along at sixty miles an hour. Suppose we commence by employing it to gauge the size of our own planet, the earth. Let us send it on a trip around the equator, the span of which is about 24,000 miles. At its sixty-miles-an-hour rate of going, this journey will take nearly 17 days. Next let us send it from the earth to the moon. This distance, 240,000 miles, being ten times as great as the last, will of course take ten times as long to cover, namely, 170 days; that is to say, nearly half a year. Again, let us send it still further afield, to the sun, for example. Here, however, it enters upon a journey which is not to be measured in thousands of miles, as the others were, but in millions. The distance from the earth to the sun, as we have seen in the foregoing table, is about 93 millions of miles. Our express train would take about 178 years to traverse this.

Having arrived at the sun, let us suppose that our train makes a tour right round it. This will take more than five years.

Supposing, finally, that our train were started from the sun, and made to run straight out to the known boundaries of the solar system, that is to say, as far as the orbit of Neptune, it would take over 5000 years to traverse the distance.

That sixty miles an hour is a very great speed any one, I think, will admit who has stood upon the platform of a country station while one of the great mail trains has dashed past. But are not the immensities of space appalling to contemplate, when one realises that a body moving incessantly at such a rate would take so long as 10,000 years to traverse merely the breadth of our solar system? Ten thousand years! Just try to conceive it. Why, it is only a little more than half that time since the Pyramids were built, and they mark for us the Dawn of History. And since then half-a-dozen mighty empires have come and gone!

Having thus concluded our general survey of the appearance and dimensions of the solar system, let us next inquire into its position and size in relation to what we call the Universe.

A mere glance at the night sky, when it is free from clouds, shows us that in every direction there are stars; and this holds good, no matter what portion of the globe we visit. The same is really true of the sky by day, though in that case we cannot actually see the stars, for their light is quite overpowered by the dazzling light of the sun.

We thus reach the conclusion that our earth, that our solar system in fact, lies plunged within the midst of a great tangle of stars. What position, by the way, do we occupy in this mighty maze? Are we at the centre, or anywhere near the centre, or where?

It has been indeed amply proved by astronomical research that the stars are bodies giving off a light of their own, just as our sun does; that they are in fact suns, and that our sun is merely one, perhaps indeed a very unimportant member, of this great universe of stars. Each of these stars, or suns, besides, may be the centre of a system similar to what we call our solar system, comprising planets and satellites, comets

and meteors;-or perchance indeed some further variety of attendant bodies of which we have no example in our tiny corner of space. But as to whether one is right in a conjecture of this kind, there is up to the present no proof whatever. No telescope has yet shown a planet in attendance upon one of these distant suns; for such bodies, even if they do exist, are entirely out of the range of our mightiest instruments. On what then can we ground such an assumption? Merely upon analogy; upon the common-sense deduction that as the stars have characteristics similar to our particular star, the sun, it would seem unlikely that ours should be the only such body in the whole of space which is attended by a planetary system.

"The Stars," using that expression in its most general sense, do not lie at one fixed distance from us, set here and there upon a background of sky. There is in fact no background at all. The brilliant orbs are all around us in space, at different distances from us and from each other; and we can gaze between them out into the blackness of the void which, perhaps, continues to extend unceasingly long after the very outposts of the stellar universe has been left behind. Shall we then start our imaginary express train once more, and send it out towards the nearest of the stars? This would, however, be a useless experiment. Our express-train method of gauging space would fail miserably in the attempt to bring home to us the mighty gulf by which we are now faced. Let us therefore halt for a moment and look back upon the orders of distance with which we have been dealing. First of all we dealt with thousands of miles. Next we saw how they shrank into insignificance when we embarked upon millions. We found, indeed, that our sixty-mile-an-hour train, rushing along without ceasing, would consume nearly the whole of historical time in a journey from the sun to Neptune.

In the spaces beyond the solar system we are faced, however, by a new order of distance. From sun to planets is measured in millions of miles, but from sun to sun is measured in billions. But does the mere stating of this fact convey anything? I fear not. For the word "billion" runs as glibly off the tongue as "million," and both are so wholly unrealisable by us that the actual difference between them might easily pass unnoticed.

Let us, however, make a careful comparison. What is a million? It is a thousand thousands. But what is a billion? It is a million millions. Consider for a moment! A million of millions. That means a million, each unit of which is again a million. In fact every separate "1" in this million is itself a million. Here is a way of trying to realise this gigantic number. A million seconds make only eleven and a half days and nights. But a billion seconds will make actually more than thirty thousand years!

Having accepted this, let us try and probe with our express train even a little of the new gulf which now lies before us. At our old rate of going it took almost two years to cover a million miles. To cover a billion miles-that is to say, a million times this distance-would thus take of course nearly two million years. Alpha Centauri, the nearest star to our earth, is some twenty-five billions of miles away. Our express train would thus take about fifty millions of years to reach it!

This shows how useless our illustration, appropriate though it seemed for interplanetary space, becomes when applied to the interstellar spaces. It merely gives us millions in return for billions; and so the mind, driven in upon itself, whirls round and round like a squirrel in its revolving cage. There is, however, a useful illustration still left us, and it is the one which astronomers usually employ in dealing with the distances of the stars. The illustration in question is taken from the velocity of light.

Light travels at the tremendous speed of about 186,000 miles a second. It therefore takes only about a second and a quarter to come to us from the moon. It traverses the 93,000,000 of miles which separate us from the sun in about eight minutes. It travels from the sun out to Neptune in about four hours, which means that it would cross the solar system from end to end in eight. To pass, however, across the distance which separates us from Alpha Centauri it would take so long as about four and a quarter years!

Astronomers, therefore, agree in estimating the distances of the stars from the point of view of the time which light would take to pass from them to our earth. They speak of that distance which light takes a year to traverse as a "light year." According to this notation, Alpha Centauri is spoken of as being about four and a quarter light years distant from us.

Now as the rays of light coming from Alpha Centauri to us are chasing one another incessantly across the gulf of space, and as each ray left that star some four years before it reaches us, our view of the star itself must therefore be always some four years old. Were then this star to be suddenly removed from the universe at any moment, we should continue to see it still in its place in the sky for some four years more, after which it would suddenly disappear. The rays which had already started upon their journey towards our earth must indeed continue travelling, and reaching us in their turn until the last one had arrived; after which no more would come.

We have drawn attention to Alpha Centauri as the nearest of the stars. The majority of the others indeed are ever so much farther. We can only hazard a guess at the time it takes for the rays from many of them to reach our globe. Suppose, for instance, we see a sudden change in the light of any of these remote stars, we are inclined to ask ourselves when that change did actually occur. Was it in the days of Queen Elizabeth, or at the time of the Norman Conquest; or was it when Rome was at the height of her glory, or perhaps ages before that when the Pyramids of Egypt were being built? Even the last of these suppositions cannot be treated lightly. We have indeed no real knowledge of the distance from us of those stars which our giant telescopes have brought into view out of the depths of the celestial spaces.

* * *

(← Keyboard shortcut) Previous Contents (Keyboard shortcut →)
 Novels To Read Online Free

Scan the QR code to download MoboReader app.

Back to Top